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A self-similar solution of the equation of plane potential flow has been obtained in 
the region of a point f where a shock wave, which limits the local supersonic zone, is formed 
on a sonic line. According to this solution there is a shock wave of variable intensity at 
the boundary of the local supersonic zone, and a characteristic is obtained at the point f 
on which the derivatives of the gas-dynamic parameters with respect to the coordinates are 
continuous. The intensity of the shock wave from the point f increases with an infinite de- 
rivative, and hence, to construct a solution, asymptotic relations on the shock wave are ana- 
lyzed. The self-similarity factor varies over the range 0.3975 5 k ~ 0.4166, and the mini- 
mum error which is introduced by taking the quadratic terms into account corresponds to k = 
0.40].7. 

i. A number of papers have been published on the problem of the wave structure of the 
local supersonic zone [1-8]. Theorems on the existence of a continuous solution in the transonic 

flow round plane bodies were proved in [i], and it was also pointed out that, according to 
the final theorem, when a transition occurs from continuous to discontinuous flow an ultra- 
sonic wave occurs at the boundary and not inside the local supersonic zone. The mathematica~( 
techniques of the theory of discontinuous solutions in the transonic approximation was de- 
veloped in [2]. Self-similar solutions of Tricomi's equation were investigated in velocity- 
hodograph variables, and an example was given of the solution with a closing local supersonic 
zone and a perpendicular sonic line with a direct jump in density. This solution turned out 
to be irregular inside the local supersonic zone since the streamlines here have a loop and 
hence are incorrect physically. The refinement of this solution by eliminating the irregu- 
larity by means of a sudden change in the rarefaction [3] is still under discussion, since 
asymptotically such a sudden change contradicts the principle of increase in entropy. 

Various statements have been published which sometimes cancel one another out. Thus, 
the suggestion was made in [4], referring to unpublished results, that the structure of 
transonic flow considered below does not exist. However, such a structure - a jumpwise pro .~ 
longation of the consolidation of a sonic line - was calculated in [5] by constructing an 
integral curve in the class of self-similar solutions of Karman's equation~ This solution 
in turn requires additional analysis (see [6], p. 642).* 

Self-similar solutions in the range considered below for the self-similarity factor 
were analyzed in [7, 8]. However, due to the fact that it is not possible to satisfy the 
shock-polar equation on the shock wave, these solutions were recognized as being physically 
unreal. The main difference from [7, 8] in the results derived below lies in the different 
representation of the boundary conditions for the self-similar solution with a shock wave, 
whose intensity increases from the point of formation with an infinite derivative. 

2. We will give the fundamental equations and formulas of the transonic approximation 
of hodograph theory. Chaplygin's equation for the stream function ~(V, ~) (where V and 0 
are the modulus and angle of inclination of the velocity vector) in the region of the sonic 
line can be converted into Tricomi's equation 

~,.~ - -  ~ = O,  ~1 = ( V  - -  l ) / V ,  T = (• ~ t)-1/~0. ( 2 . 1 )  

Here and below for the ideal gas considered K is Poisson's adiabatic index; the gas-dynamic 
quantities are reduced to dimensionless form so that we take as unity on the scale of ve- 
locity and density the critical values V, and p,, while for the pressure p we take p,V, 2. 
The independent variable T is measured from its value on the streamline at the point f. 

*The range 3/4 < k < 11/12 is incorrectly given in [6], with reference to [5], since the re- 
sult in [5] is given for k = 2/5. 

Zhukovskii. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. i, 
pp. 24-32, January-February, 1993. Original article submitted May 17, 1989; revision sub- 
mits September 13, 1991. 

0021-8944/93/3401-0021512.50 �9 1993 Plenum Publishing Corporation 21 



In  the transonic approximation we have formulae for converting from the plane of the 
velocity hodograph to the physical x, y plane 

dx = ~dldq + q%d~, dy = d~. (2 .2) '  

I n  ( 2 . 2 )  t h e  a b s c i s s a  x i s  d i v i d e d  by (< + 1) z/2 and o n l y  t h o s e  t e rms  a r e  r e t a i n e d  which ,  
in  t h e  e x p r e s s i o n  f o r  t h e  J a c o b i a n  o f  t h e  t r a n s f o r m a t i o n ,  g i v e  

E q u a t i o n  ( 2 . 1 )  has  a s e l f - s i m i l a r  s o l u t i o n  ~ = I z l 2 k F ( ~ )  (F (~)  i s  t h e  g e n e r a ]  h y p e r g e o -  
m e t r i c  f u n c t i o n  ( c o n s i s t i n g  o f  two l i n e a r l y  i n d e p e n d e n t  s p e c i a l  s o l u t i o n s ) ,  ~ = 1 - ( 6 ~ ) /  
(9z 2) i s  t h e  s e l f - s i m i l a r  v a r i a b l e ,  and k i s  t h e  s e l f - s i m i l a r i t y  i n d e x ) .  I n  ~, ~ v a r i a b l e s  
we o b t a i n  t h e  f o l l o w i n g  e q u a t i o n s  f o r  5 and x from ( 2 . 2 ) :  

A = ( t  - -  ~ )~ /~{[kF  + (t - -  ~)F'] ~ --  (1 --  ~)F'~}1~1~r ( 2 . 3 )  

~'-- -~.-~-lsi~"~ [ 1 S ( l _ ~ ) i . , _ / 3 ( # f _ ~ f ,  ) ~, n - ~,~ ( 2 . 4 )  

Using Eqs. (2.4) we can map the line g = const into the x, y plane, where n is the self- 
similarity index of the solution of the equations 

~1~ : ~,, % : ~ ,  ( 2 . 5 )  

which  f o l l o w  d i r e c t l y  f rom ( 2 . 2 ) .  S i n c e  in  t h e  c l a s s  o f  s o l u t i o n s  c o n s i d e r e d  t h e  shock wave 
c o i n c i d e s  in  t h e  p h y s i c a l  p l a n e  w i t h  t h e  l i n e  ~ = c o n s t ,  a l o n g  i t s  g e n e r a t r i x ,  t a k i n g  t h e  
s econd  e q u a t i o n  o f  ( 2 . 2 )  i n t o  a c c o u n t ,  we o b t a i n  

T ~ ~112A ~ y l / 2 ~ ,  q ~ T213 ~ ~1/3~ ~ y~I3A, ( 2 . 6 )  

whence it follows that at the point where the shock wave is formed the derivative of the 
modulus of the velocity along its generatrix is equal to infinity when k > 1/3, and zero 
when k < 1/3. If k < 1/2, the derivative of the angle of inclination �9 is also equal to 
zero. We will denote by u and v the projections of the velocity vector on the x and y axes, 
respectively. On the shock wave with the equation x = x0y n, x 0 = const, by (2.6) we obtain 
the relations 

2m ~ - 1  U = 1. ~-  Cl, y , p = -7  Cp~J 2re, [3 = J. - y  COy 2m, V = C vy TM, ( 2 . 7 )  

where m = n - 1 and it is assumed that the constants Cu, Cp, Cp, c v are different on both 
sides of the sudden jump. By calculating the mass flow G and the components of the momentmn 
flux Px and Py using (2.7), we have, up to terms ~y4m compared with unity, 

i r - -  nXoCv Co ~- C u ./:]2m~-i -4 
G = y -~- 2m + t 4 m  2 -  L i ~4m+1, 

' c 2 q - 2 c  c - - n x  c • 2 4 7  I c v + 2 q ' + c t ~  y2m+l ~ u o o Vy4m+l 
P x  : • Y + 2 m + l  4 m + t  ' 

7"ZX( C - -  r XO ,L/m+1 0 P __ _ ,.~3m+l _L cu + co CvuSm+l  
P v = 7 .  + 3 ~ + - t  ' ~ n + i  ~ " 

Expanding the total enthalpy H and the entropy function S = pp-< in series in powers of 
y we obtain 

( r - - X C  ~ C p T C o i  -p - - - p l . ,  ~ 

S = •  + ( C p _ _ % ) y 2 m _ _  Xcpc p 2 c . 

This  shows t h a t  in  t h e  a s y m p t o t i c  e x p a n s i o n s  g i v e n  above  as y § O, t h e  main t e rms  a r e  
the terms ~y2m, since the terms ~y,m introduce a "parasitic" effect of nonconservation of 
total enthalpy and give rise to vorticity. 
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Hence, from the mass, momentum and energy flow equations, we have the following three 
conditions on the shock wave: 

leo § =0, [cp § +c o ] =0, [nXoC v-c , ]  =0. 
Here the square brackets indicate the difference between the functions enclosed within them 
or expressions from the left and right of the discontinuity. Hence it follows that in po- 
tential flow up to the shock wave Cp = Cp = -c u. From the first two equations obtained on 

the shock wave we have that analogous equations are satisfied behind it also, i.e., vorticity 
of the flow does not occur in the region of the point f. Hence, in addition to the equations 
[x] = 0 and [@] = 0 or [y] = 0, when constructing the solution one only needs to satisfy the 
third of the relations written above, which denotes equality of the tangential component of 
the velocity on the shock wave 

[zl § [qlz '  = O. ( 2 . 8 )  

These boundary conditions on the shock wave are only obtained assuming that the self-similar 
solution (2.7) exists, apart from the main terms ~y2m, and that all the flows are equal~ 

If we integrate Eqs. (2.5) over the region containing the shock wave, Eq. (2.8) also 
follows from the second equation, while from the first we have 

[q2] ~ 2[z]x '  ~ 0. ( 2 ~ 9 )  

The  t e r m s  i n  t h i s  e q u a t i o n  a r e  o f  t h e  o r d e r  o f  ~y4m, a s  f o l l o w s  d i r e c t l y ,  f o r  e x a m p l e ,  
from a comparison with the third term in the expression for G, which differs from (2.9) 
solely in the coefficient 2 in front of Tx'. Eliminating x' from (2.9) using (2.8) we obtain 
an equation for the shock polar in the transonic approximation (here and below the subscripts 
1 and 2 indicate parameters before and after the sudden change) 

2(~2 - ~,)2 __ (m + ~ ) ( m  - ,12) ~. ( 2 . 1 0 )  

I t  was a s s u m e d  i n  [ 4 ,  7 ,  8] t h a t  when c o n s t r u c t i n g  t h e  s o l u t i o n  i t  i s  n e c e s s a r y  t o  s a t -  
i s f y  ( 2 . 1 0 )  e x a c t l y ,  and  s i n c e  t h i s  c o u l d  n o t  be  d o n e ,  i t  was a s s e r t e d  t h a t  a s h o c k  wave  c a n -  
n o t  o c c u r  on t h e  s o n i c  l i n e s ,  i f  a weak  d i s c o n t i n u i t y  ( a  c h a r a c t e r i s t i c  on w h i c h  t h e  d e r i v a -  
t i v e s  o f  u ,  v ,  p ,  a n d  p w i t h  r e s p e c t  t o  t h e  c o o r d i n a t e s  a r e  d i s c o n t i n u o u s )  d o e s  n o t  o c c u r  a t  
t h e  p o i n t  w h e r e  i t  o r i g i n a t e s .  H o w e v e r ,  t h e  o n s e t  o f  a s h o c k  wave  i n s i d e  t h e  l o c a l  s u p e r s o n i c  
z o n e  c o n t r a d i c t s  t h e  t h e o r e m  m e n t i o n e d  a b o v e  [ 1 ] .  I t  i s  c l e a r  f r o m  p h y s i c a l  c o n s i d e r a t i o n s  
t h a t  t h e  s h o c k  wave  c o n s i d e r e d  a r i s e s  a t  t h e  i n t e r s e c t i o n  o f  c o m p r e s s i o n  w a v e s ,  w h i c h  a r e  i n -  
c i d e n t  on t h e  c l o s i n g  p a r t  o f  t h e  b o u n d a r y  o f  t h e  l o c a l  s u p e r s o n i c  z o n e .  O n l y  one  s o l u t i o n  
i s  known [ 9 ] ,  w h i c h  d e s c r i b e s  t h e  i n t e r s e c t i o n  o f  c o m p r e s s i o n  w a v e s  i n  t h e  f o r m a t i o n  o f  a 
s h o c k w a v e  i n s i d e  a s u p e r s o n i c  f l o w  and  w h i c h ,  a s  i s  a l s o  s u g g e s t e d  b e l o w ,  p o s s e s s e s  an  i n f i -  
n i t e  derivative of the intensity of the shock wave at the point where it originates. In 
these solutions it is not possible to satisfy all the above-mentioned conditions on the 
shock wave simultaneously, including (2.10). Only in the solutions in [6, i0] are these con-. 
ditions completely satisfied, since the shock wave, to a first approximation, degenerated 
into a characteristic, i.e., it had a derivative of the intensity equal to zero. The gas- 
dynamic parameters on such a shock wave are continuous to a first approximation. 

The above analysis shows that condition (2.10) can only be obtained by including terms 
~y4m, the exact balance of which is not ensured in the self-simi]ar approximation (2.7). 
Hence, the exact satisfaction of (2.10) on a shock wave of variable intensity which does not 
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degenerate into a characteristic has not been rigorously proved in the vicinity of the point 
where it is formed. Here we must estimate the solutions constructed for the least error, 
which is introduced by taking into account terms ~y4m. This estimate was made in [8], but 
with an inadmissible rejection of the condition Ix] = 0 in favor of (2.10). 

3. The proposed structure of the solution in the physical plane in the neighborhood of 
the point f (the origin of coordinates) is shown in Fig. i. Figure 2 corresponds to the 
hodograph plane. Here the lines emerging from the origin of coordinates represent ~ = const 
(constant is indicated next to the line). Along the positive n axis the variable ~ = -~, 
along the negative axis ~ = +~, and along the T axis~ with which the sonic line coincides, 

= I. The equation of the characteristic g = 0. In the zone -i ! ~ ! I, z ~ 0 the hyper- 
geometric function-solution is represented in the form of the sum of two linearly independent 
partial solutions of Eq. (2.1) 

F~ = F(--k ,  1,'2 - -  k; 5"6 - -  2k; ~), F2 = F(k + 1/6, k + 2 / ' 3 ;  2k + 7/6; ~). 

The  functions Fz and F 2 occurring in this expression only exist when [gl 5 i, and pro- 
vided that they are not equal to a negative integer of the expression 5/6 - 2k or 7/6 + 2k. 
The factor in front of F 2 introduces a singularity onto the ~ = 0 characteristic if 2k + 1/6 
is not equal to a positive integer. However, F z does not exist for such k and, if c z = 0~ 
we cannot have ~(0, z) = 0. The use instead of F z in this case of another particular solu- 
tion with a logarithmic singularity also does not satisfy the above condition of continuity 
of the derivatives of ~ on the C+-characteristic (Fig. i). Hence, by equating c 2 = 0 and 
c z = -i we have a solution in which the self-similarity index k is not as yet determined: 

~2 = --T2hFI(~), - - t  ~ ~ ~ I, T ~  0, 

= -- _ -~-1, ~, = 3 (f -- ~)~/3 FWh-2/< 
\ o /  

( 3 . 1 )  

The equation of the "zeroth" stream line, passing through the origin of coordinates, 
r $0) = 0 or Fz($ 0) = 0. Since Fl(0) = i, in order that this line should lie between 
the sonic line and the characteristic when T > 0, as can be seen by comparing Figs. i and 2, 
it is necessary to satisfy the inequality (F is the gamma function) 

F 1(t) - r (5/6--2k) r( l /3)  
r (5 /6--k)  r ( t / 3 - -  k) <0 

Hence it follows that the region of permissible values for the self-similarity index is 
5/12 > k - i/2 > 1/3 (i = 0, i, ...). The lower limit in this inequality is obtained from 
the condition for ~q to be finite as �9 + 0, since otherwise the solution (3.1) would have a 
nonphysical singularity at the point f. 
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Using the formulas for analytic continuation of the hypergeometric function [6], we ob- 
tain in the supersonic region of flow when -~ ~ ~ ! -i and -i J g ! 0 for m J 0, respectively 

= --I~ !~-h I g i h [AIFa(~ -t) r B, sign (,)I~ I -l'2-Ft(~ -t) ], 

Fa = F(--k,  1/6 ~-k;  1/2; ~-t), F ,  = F ( l / 2 - -  k, 2/3 @k;  3/2; ~-~), 

z tV2F (5,/6 - -  2k) 2 9 1 / 2 F  (576 - -  2k) . 

A ~ = r ( t / 2 _ k )  t ~ (5 /6 -~) '  B~--  r ( - -k )  I ' ( t / a - - k ) '  

- -  1 /2  P ( 5 / 6  - -  2k)  F ( - -  2/~ - -  t / 6 )  9 - - 4 k - - 1 / 3  
A ~ : =  s i n  [=  ( 2 k - ; -  1 /6)]  ' B o  = - -  P ( - - 2 k )  P ( 2 / 5 - - 2 k )  ~ " 

(3.2) 

(3 .3 )  

The hypergeometric function on the sonic line has a singularity for analytic continu- 
ation into the subsonic region F'(g) ~ (i - ~)-2/3. Hence, by isolating this singularity, 
for ~ ~ 1 we obtain 

= I T ! ~  h [alFa(~ - l )  - -  b 1 sign ( '~)F4(~-I)~-t? ' ], 

al = 2A1 sin [n(k  - -  1/6)], b, ----- 2B1 cos [n(k - -  t/6) 1. 
(3 .4 )  

Finally, continuing this solution in the same way into the supersonic zone when 0 ~ ~ 
1 and m 5 0, we obtain 

a2 = - - 2 A 2  s in  [n(4k - -  i / 6 ) ] ,  b2 = 2B2 cos [n(2k -i- 1 /8)] .  
(3<5) 

The two-valued nature of the solution with k from intervals with i ~ 1 can be shown by 
analyzing (3.2). In the supersonic region of the flow in this case the stream lines turn 
into the opposite direction. A solution with such an irregularity is clearly erroneous, as 
in [2], and hence we will further consider only the first interval for the index k, i.e., 
we will assume i = 0. 

4. The hypergeometric function-solution calculated from (3.]_)-(3.5) for k = 0.3792, is 
shown by the continuous lines in Fig. 3a for -i S ~ ! 2 (outside the figure these lines 
merge as 16] ~ ~), the curve F + corresponds in Fig. 2a to the region with �9 > 0, while the 
curve F- is the solution in the lower half-plane. On the semicubic parabola ~ = 0 this func- 
tion has a discontinuity 

[F-(0)] = {I/2 ~ sin [~(4k - -  i /6)]}/s in  [~(2k ~ t /6)].  

This discontinuity leads to a sudden jump in the stream function, which is shown in 
Fig. 2a by the dashed line. The Jacobian of the transformation A was calculated from (2.3) 
for fixed m and is shown in Fig. 3 by the dashed line with the same indices as F. It can be 
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seen that in the neighborhood of the characteristic with the discontinuity [F] the Jacobian 
A becomes positive, changing sign to the right and to the left of ~ = 0. In accordance with 
the theorem of the transformation, this indicates [6] a sudden change in the consideration, 
which is reflected into the region covering the zone with A ~ 0. 

The hypergeometric function shown in Fig. 3a also does not change qualitatively for 
other values of k from the first interval, but the dimensions of the zone with positive 
Jacobian turns out to depend considerably on k. Thus, whereas for k = 0.3792 this zone is 

situated at -0.205 S $ ! 0.407, as k increases the dimensions of the zone increase, and for 
k = 0.4075 its left: limit ~ = -~. The right-hand boundary does not exceed g = i. When k 
is increased further from the line A = 0 in Fig. 3 A+ and not A- is intersected when g < 0, 
and the abscissa at the point of intersection increases. Figure 3b corresponds to this 
case. Points 1 and 2 of curve F- in Fig. 3a are connected by means of the shock polar (the 
dash-dot line in Fig. 2a), but in this case the equation [x] = 0 is not satisfied, i.e., the 
thickness of the shock wave is not zero. If in this equation we eliminate l~i/T21 using the 
relation [~] = 0, we obtain the equation X(~i, ~2) = 0. It turns out that the points ~i < 0 
and ~2 > 1 do not exist: on the curve F-, for which the equation X = 0 would be satisfied. 
Hence, relation (2.8) is also not satisfied. 

The above-mentioned behavior of the Jacobian (2.3) as k + 5/]_2 indicates the need to 
search for a solution in which the point 1 belongs not to the curve F-, as is shown in Fig. 

3a, but to the left branch of the line F + in Fig. 3b. This indicates that on passing 
through the shock wave the angle of deviation of the flow changes sign from positive to nega- 
tiveo In fact, it can be seen from the calculations that when 0.3975 < k < 5/12 in the plane 

of the variables ~i and ~2 for each k there is a line X(~i, ~2) = 0, on which, together with 
[$] = 0, the relation [x] = 0 is satisfied. In this case (2.10) is not satisfied exactly, 
but condition (2.8) is satisfied on each curve X = 0 when ~2 = i. 

In Fig. 4 the continuous lines 1-4 (X = 0) are drawn for k = 0.4158, 0.415, 0.4142, and 
0.4125. For ~i and ~2 belonging to the curve X = 0, we calculated the left-hand side of Eq. 
(2.8), which we denote by 6. The functions 6(~ i) are shown in Fig. 4 by the dashed curves. 
It can be seen that for each of the indicators considered, the dashed curve intersects the 
6 = 0 axis. The points of intersection gives the required solution with a shockwave, on 
which, in the self-similar approximation considered, all the boundary conditions are satis- 
fied (the mass, momentum, and energy flux equations). The Mach number behind the shock wave 

M 2 < i for k > 0.4075 and M 2 > 1 for k < 0.4075. 

The hypergeometric function-solution is shown in Fig. 3b for k = 0.4125 with the same 
notation of the lines as in Fig. 3a. The flow hodograph in the vicinity of the point where 
the shock wave formed is shown in Fig. 2b. Here the zeroth stream lines correspond to the 
values $0 + = 0.216 and ~0- = 2.016, while the boundaries of the sudden change ~i = -0.6010 
and g2 = 1.0138. The Jacobian of the transformation is positive between the lines $+ = 
-3.464 and ~- = 0.864 (the dashed curves in Fig. 2b). In the solution obtained the ratio 
of the angles of deviation of the flux on the shock wave is constant and equal to ~/~2 = 
-6.5272. 

5. As already pointed out, the sudden change in compression, which bounds the local 
supersonic zone, is formed due to the action of the compression waves, which arrive from the 
sonic line on the closing parts of the zone boundary. In fact, in the solution obtained, as 
k ~ 5/12, the zeroth stream line tends to a semicubic parabola ~0 = 0 in the upper half- 
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plane in Fig. 2b. Hence, in the region of the point f the supersonic flow approaches the 
flow in a simple compression wave, and in this case the formation of the shock wave precedes 
the formation of the beam of characteristics. The structure of the flow is similar to that 
obtained in the problem of supersonic flow around the concave surface of a wall [9]. 

Note that, as follows from Fig. 2b, the angle of deviation of the stream line at the 
point f (the origin of coordinates) has a minimum value compared with T on the sonic line 
and on the "supersonic boundary" of the shock wave $I. This behavior of the angle of inclina- 
tion of the velocity vector agrees with the approximate solution [ii], where it is stated 
that the occurrence of an irregularity of the waves on the closing part of the local super- 
sonic zone indicates twisting of the supersonic flow, when the limit value of T reached on 
the sonic line is higher than at the point where it intersects the wall of the body around 
which flow occurs. 

In the above range the self-similarity index varies continuously, and hence the solu- 
tion of the local problem of the formation of a shock wave is not unique. This is obviously 
confirmed physically by the fact that the intensity of the shock wave on the boundary of the 
local supersonic zone varies depending on the flow conditions, and changes solely in the 
scaling factor are insufficient - the exponent in Eqs. (2.7) also varies over a narrow range. 

While remaining within the framework of the local problem we will determine the unique 
value k = 0.40]_7 from the minimum value of the error which is introduced by taking quadratic 
terms into account in (2.10). In this case on the shock wave ~i = -4.0922, g2 = 0.9855 and 
~I/T2 = -1o8824, and the zeroth stream lines correspond to g0 + = 0.59 and $0- = 1.64, A > 0 
when -7.4007 ! g ~ 0.77. 

Hence, in the solution constructed on the shock wave 

~ [~ t  3k ~ [p ]  3k, 3k  ~ 6 /5 ;  (5.1) 

: ~o~  ~, ~ = ( t  - -  k ) / k  ~ 3 / 2 .  ( 5 . 2 )  

Equation (5.2) for the vorticity ~ was obtained from the relation for the increment in 
the entropy [S] ~ [p]3 proved in [6]. The coefficient of proportionality ~0 is found from 
the expansion of the Hugoniot adiabatic in series in powers of IS] and [p]. It follows from 
(5.1) that the intensity of the shock wave at the point where it originates has a derivative 
that: is infinite along the length of the generatrix. Note that the intensity of the shock 
wave [p] ~ ~i/2 in the solution in [9]. 

After transforming the lines shown in Fig. 2b into the physical plane using (2.2) we 
obtain for the characteristic lines the equation x = CxlY[ n, n = 1.404 with c x = -0.2593 on 
the sonic line, c x = 0.3]_72 on the shock wave, and c x = -0.8153 on the characteristic arriv- 
ing at the point f. These lines (the dashed, continuous, and dash-dot lines, respectively) 
are drawn in Fig. la. It can be seen that the sonic line and the characteristic c+ are 
concave, while the shock wave is convex in the direction towards the incoming flow. At the 
point f the lines are tangent to one another and are perpendicular to the zeroth stream line 
(with the arrow). 

The most probable solution is the one indicated above with minimum error corresponding 
to n = 1.4149, c x = 0.2958 on the shock wave, c x = -0.8024 on the C+-characteristic~ and c x = 
-0.7454 and 0.3312 on the sonic line. These lines are drawn in Fig. lb. It can be seen that 
the main difference from the solution shown in Fig. la is in the sonic line, which has a 
point of inflection f and limits the region of flow behind the shock wave. This shock wave 
relates to a weak family, since the Mach n~nber behind it is greater than unity. 

The solution obtained agrees with the theorems in [i] and explains~ in the transonic 
approximation, the occurrence of a shock wave closing the local supersonic zone when a char- 
acteristic without a singularity arrives at the point of formation. This solution is an 
alternative to the conclusions in [4, 7~ 8], but there is no basic for asserting that it is 
nonphysical, since the requirement that (2.9) or (2.10) should be exactly satisfied denotes 
a balance of the quadratic terms, which are clearly neglected in the class of self-similar 
transonic solutions. Hence, the determination of x' from (2.9) to obtain (2.]_0) is ill-" 
posed, i.e., a small error in calculating [D 2] leads to a considerable error in x' and, con- 
sequently, it is not possible to satisfy (2.10) exactly. 
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The content of this paper was considerably improved as a result of a discussion of the 
preliminary results obtained at a seminar organized by G. G. Chernyi and in discussions with 
V. N. Diesperov and Yu. B. Lifshits. 
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THEORETICAL MODELS OF DETONATION OF A FLAT LAYER OF CONDENSED EXPLOSIVE 

WITH DIMINISHING DENSITY 

E. E. Lin, ~. N. Pashchenko, and B. P. Tikhomirov UDC 5 3 4 . 2 2 2 . 2  

We have obtained in [i] the numerical nonself-similar solution of the problem of de- 
notation wave (DW) propagation in a flat layer of a condensed explosive (EX) whose density 
P0 diminishes according to a power law: 

Po = Poo(l - -  x/Lo) ~, 8 > O. ( 1 )  

Here, x is the present coordinate, P00 is the initial EX density at the x = 0 section, ad- 
jacent to an absolutely rigid wall, L 0 is the relative length over which P0 formally van- 
ishes, and d is the exponent, which varies over the 0...2 range. The distribution of ca1 ~ 
oricity, i.e., of the specific energy release Q0 per unit mass in the direction of thickness 
of the EX layer, was used in two limiting forms [2-4]: 

Qo = Qoo(Oo/poo)h (2)  

Qo ~ Qoo = cons t ,  ( 3 )  

corresponding to either the purely elastic or the purely thermal character of the intrinsic 
energy of detonation products (DP) for a polytropic equation of state with the polytropic 
exponent k = 3 (Q00 is the caloricity corresponding to the density P00). The DW behavior 
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